
Binarium cryptocurrency whitepaper

http://binarium.money

Author: Rodion Karimov (RodionKarimov@yandex.ru , http://imagination-works.ru ,
https://vk.com/RodionKarimov), assistents: Anton Novozhilov (haron@dcyber.ru) and
Vladislav Nitcak (wladislav_n@bk.ru).

Abstract

Binarium cryptocurrency is the first one, which is protected from ASICs. It does so by
configurable hashing algorithm (with use of different hashing and encryption functions), which
configures itself once per week or blocks generation difficulty change. This makes it costly to
implement and own ASICs for each sub-function and reconfigure them in accordance with current
algorithm state. And it uses data amplification with Salsa209 fast stream cipher. This also makes
hashing function dependent on RAM sizes and random accesses speed. Which, in turn, makes it
even more costly to build ASICs for and reduces GPU efficiency in mining, because their VRAM
is better suited for piplined transfers of large data volumes, instead of speed of random accesses,
and because their cache is shared between cores and part of it is read-only. Also, each thread,
calculating hashes for Binarium blocks should have its own copy of memory area for data
amplification, because this process and its intermediate data depends on information of block in
consideration. With the main anti-ASIC factor is the ability to change hashing functions after
Binarium widespread adoption, while keeping its current consensus.

Binarium cryptocurrency is the first one, which supports hashes functions changes and other major
network-wide changes without breaking a consensus. It makes so by implementing updates in 4
steps: introduction of unactivated updates into clients; “soft” clients enforcing each other to update
the software; “hard” clients enforcing each other for updates; and actual activation of changes in
clients, when network reports satisfying level of changes adoption in it. In this model clients send
upgraded peers statistics information to main Binarium RPC server, this allows to monitor network
state and activate changes, when enough amount of users upgraded to new software versions. This
functionality will be implemented after launch of cryptocurrency, when we’ll gather enough
feedback on current algorithm and overall Binarium block-chain functioning.

It is based on Dash2 cryptocurrency and supports master nodes, InstantSend and PrivateSend
functions from it.

We plan to make its integration with online games in form of:

- Ingames currency, which player can buy and sell for real money.
- Created by game developers in-game and near-game quests, which players can complete and
receive reward in Binariums.
- Player to player trade agreements, from which game developers and Binarium developers receive
commission.
- Games, DLCs, ingame items, ingame money and other valuables exchange.
- Ability to organize tournaments by game developers and gamers themselves with prizes in
Binarium, games, DLCs, ingame items and other valuables.

http://binarium.money/
mailto:wladislav_n@bk.ru
http://imagination-works.ru/
mailto:RodionKarimov@yandex.ru

Later on we plan to add smart-contracts, electronic documents management and other functions,
which we’ll keep for now in secret. We’ll provide further technical details on functions
implementation in the following sections, also you can see it yourself in Binarium source code14.

1. Algorithms diversity and reconfiguration

1.1. Hashing algorithms

Binarium hashing algorithm is based on X112, it uses its
hashing sub-functions: blake, bmw, groestl, skein, jh,
keccak, luffa, cubehash, shavite, simd, and echo. Also
following functions were added: Russian GOST 2012
Streebog3 and Whirlpool4. We considered adding SwiFFT5

hashing function, which uses Fast Fourier Transforms15 to
generate hashes from input data and, probably, can be used in
Post-Quantum Cryptography13 era. But this function
currently is rather raw and not widely used, so it is best to put
it now into further development and consider its
implementation in next network-wide updates.

1.2. Encryption algorithms

Binarium also incorporates reliable cryptographic encryption
functions in the hash obtaining process: GOST 2015 block
encryption function Kuznechik6, ThreeFish7 block
encryption function and Camellia8 block cipher.

1.3. Reconfiguration takes place each week or by blocks difficulty change

There are 3 configurable steps, introduced between X11 hashing sub-functions applications, they
are defined by week number from genesis block and nBits field of current block. The first one after
step two, between BMW and Groestl functions:

iWeekNumber = _iTimeFromGenesisBlock /
I_ALGORITHM_RECONFIGURATION_TIME_PERIOD_IN_SECONDS *
I_ALGORITHM_RECONFIGURATION_TIME_PERIOD_IN_SECONDS;
iIndex = (iWeekNumber + nBits) % I_AMOUNT_OF_INTERMEDIATE_HASH_FUNCTIONS;
aIntermediateHashFunctions [iIndex] (uint512AdditionalHash.begin (), 64,
nullptr, static_cast<void*>(&hash[1]));

It selects hashing function from array of available and applies it to intermediate hash. The second
one after step 8 of X11 hashing, between applications of CubeHash and Shavite sub-functions:

iIndex = (iWeekNumber + nBits) %
I_AMOUNT_OF_INTERMEDIATE_ENCRYPTION_FUNCTIONS;
aIntermediateEncryptionFunctions [iIndex] (static_cast<const
void*>(&hash[6]), 64, static_cast<const void*>(&hash[0]),
static_cast<void*>(&hash[7]));

Figure 1: Binarium configurable hashing algorithm.

It selects encryption algorithm from array of available and applies it to intermediate hash. And 3-rd
configurable step is introduced between 10th and 11th steps, between SIMD and Echo sub-hashes
applications:

iIndex = (iWeekNumber + nBits + 10) % I_AMOUNT_OF_INTERMEDIATE_HASH_FUNCTIONS;
aIntermediateHashFunctions [iIndex] (uint512AdditionalHash.begin (), 64,
nullptr, static_cast<void*>(&hash[9]));

It selects hashing function from array with offset from first reconfiguration index.

2. Memory hard pseudo-random writes and reads hashing function

2.1. Sequential Salsa20

First 32 KB memory block is zeroed for data
amplification, then data is written to it in pseudo-random
locations in form of 512 bits memory blocks. Salsa20 is
applied sequentially: for each new encryption previous
encryption result is applied to source data and there is no
easy way to know where new data block will be written in
memory. This way memory can be processed only
sequentially and there is no way to parallelize this process
on GPU and ASIC.

memset (aMemoryArea, 0,
I_AMOUNT_OF_BYTES_FOR_MEMORY_HARD_FUNCTION);

Then sequential encryption of intermediate Binarium
block hash data (result of Skein sub-function) is
performed:

for (i = 0; i < I_AMOUNT_OF_BYTES_FOR_MEMORY_HARD_FUNCTION / (64) / 2; i ++)
{
 iWriteIndex = (
 // % I_AMOUNT_OF_BYTES_FOR_MEMORY_HARD_FUNCTION here is to prevent
 // integer overflow on subsequent addition operation.
 GetUint64IndexFrom512BitsKey (uint1024CombinedHashes.begin () + 64, 0) %
I_AMOUNT_OF_BYTES_FOR_MEMORY_HARD_FUNCTION +
 i * I_PRIME_NUMBER_FOR_MEMORY_HARD_HASHING) %
 (I_AMOUNT_OF_BYTES_FOR_MEMORY_HARD_FUNCTION - 8 * ECRYPT_BLOCKLENGTH);

 // From previous encryption result in memory to next encryption result in
memory.
 ECRYPT_encrypt_blocks (
 & structECRYPT_ctx,
 uint1024CombinedHashes.begin () + 64,
 & (aMemoryArea [iWriteIndex]),
 8);

 uint1024CombinedHashes.XOROperator (64, & (aMemoryArea [iWriteIndex]));

} //-for

Figure 2: Binarium memory hard hashing function.

Function GetUint64IndexFrom512BitsKey () takes 512 bits memory block (
uint1024CombinedHashes.begin () + 64) and obtains from it uint64_t for pseudo-random
seed for index into 32 KB aMemoryArea, which is combined with i *
I_PRIME_NUMBER_FOR_MEMORY_HARD_HASHING , which performs iteration over this memory area.
Then encryption process goes on : ECRYPT_encrypt_blocks () and its result is combined with
uint1024CombinedHashes.begin () + 64 , from which on next step new index and source data
will be formed. This makes new encryption steps dependent on previous steps and makes it
necessary to perform encryptions sequentially. Also, this way it is hard to predict which data will be
written to which locations and introduces large possibility of data parts overwrites, so it is hard to
predict what will be placed in given memory bits. After this whole memory block is XOR’ed into
uint1024CombinedHashes.begin () + 64 memory area and it is combined with step 5 hash (JH
result) of modified X11 algorithm.

for (i = 0; i < I_AMOUNT_OF_BYTES_FOR_MEMORY_HARD_FUNCTION / 64; i ++) {
 uint1024CombinedHashes.XOROperator (64, & (aMemoryArea [i * 64]));

} //-for

This step happens after step 5 of X11 hashing algorithm, before Keccak hashing sub-function is
applied.

However, each block nNounce guess can be processed in separate thread, which opens possibility
for parallelization. But each thread requires its own 32 KB memory area to store amplified data. So,
this limits parallelization on GPU and increases ASICs building cost. And overall algorithm is
random memory writes and reads bound, so this limits its performance on GPU and ASICs and
opens possibilities for egalitarian computing10: users with equipment with different performance
have equal or close abilities in network. This makes it much harder to concentrate large computing
powers in single hands and perform 51% attack11.

2.2. Performance considerations.

Our hashing algorithm has 15 hashing subfunctions + 1 memory-hard hashing function, from these
15 only 3 are configurable and overall hashing speed is bound to speed of random memory writes
and reads. So, we expect, that hashing speed will not vary too much, when algorithm reconfigures
itself.

3. Introduction of major cryptocurrency updates, while keeping current
consensus

3.1. 4-steps major network-wide changes implementation in cryptocurrency network

a) Implementation of changes in code in inactive state with placing of hashing functions, which
indicate to other peers whether clients have updated software. They do so via Zero-knowledge
proof12-like protocol: clients ask their peers to send them results of applications of hashing
functions with given index to random data and then check its correctness with their results. Also in
code conditions are introduced, which indicate when changes should be activated and from which
block or time network should switch to new functionality. Triggers for these conditions are polled
from consensus of RPC-servers.

 We can create, say, 100 RPC-servers and network will switch to new functionality, when all
servers answer and report the same conditions for functionality switch. This way, we can easily
control whether network will switch or not: we can disable upgrade process, in case of emergency,
just by switching off at least 1 server. And this way malicious agents will not be able to easily gain
control over all RPC-servers and hold it during all time after setting upgrade conditions and till
update itself. We can set in clients mandatory pause in 1 week – a couple of days from update
activation announcement till its adoption by network, to ensure that update is initiated by us.

b) Peers check whether other clients have updated software and “softly” enforce each other to
update: send to them GUI notifications about this fact.

c) Peers “hardly” enforce each other to update: they ban for defined time other clients, if they have
not updated their software. Network will move to this stage, when adoption of changes will reach
95% or more. Clients can gather statistics about update status of their peers and send it to main RPC
server. This way we can activate new functions implementation stages, when network is ready for
them. We can consider statistics only from clients, which have at least some amount of Binarium in
their wallets, so that malicious agents will not be able to gather large amount of dummy empty
wallets and distort statistics.

d) Update itself: we define on RPC servers consensus conditions, from which network will start to
use new functionality (block index, time from genesis block, and so on). Clients receive this
information and switch to it, when time comes.

3.2. BIPs16

We can consider on whether Bitcoin Improvements Proposals16 are applicable to network updates,
but our system is better in this respect, because BIPs require authors to gather by hand community
consensus on changes and keep it while network reconfigures itself. While our system will do this
automatically.

References

1. Bitcoin whitepaper : https://bitcoin.org/bitcoin.pdf .
2. Dash : https://www.dash.org/ .
3. GOST 2012 Streebog whitepaper : http://specremont.su/pdf/gost_34_11_2012.pdf .
4. Whirlpool hashing function : https://en.wikipedia.org/wiki/Whirlpool_(cryptography) .
5. SwiFFT hashing function : https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifft.pdf .
6. GOST 2015 block encryption function Kuznechik :
http://www.tc26.ru/standard/gost/GOST_R_3412-2015.pdf .
7. ThreeFish block encryption function : http://www.skein-hash.info/sites/default/files/skein1.3.pdf .
8. Camellia block encryption function : https://info.isl.ntt.co.jp/crypt/eng/camellia/ .
9. Salsa20 stream cipher : https://cr.yp.to/snuffle.html .
10. Egalitarian computing : https://arxiv.org/pdf/1606.03588.pdf .
11. 51% attack : https://www.investopedia.com/terms/1/51-attack.asp .
12. Zero-knowledge proof : https://en.wikipedia.org/wiki/Zero-knowledge_proof .
13. Post-quantum cryptography : https://en.wikipedia.org/wiki/Post-quantum_cryptography .

https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifft.pdf
http://specremont.su/pdf/gost_34_11_2012.pdf
https://www.dash.org/
https://bitcoin.org/bitcoin.pdf

14. Binarium sources : https://github.com/binariumpay/binarium .
15. Fast Fourier Transform : https://en.wikipedia.org/wiki/Fast_Fourier_transform .
16. Bitcoin Improvements Proposals : https://github.com/bitcoin/bips/blob/master/bip-
0002.mediawiki .

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://github.com/binariumpay/binarium

